Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet ; 401(10376): 605-616, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2184594

RESUMEN

There has been a renewed focus on threats to the human-animal-environment interface as a result of the COVID-19 pandemic, and investments in One Health collaborations are expected to increase. Efforts to monitor the development of One Health Networks (OHNs) are essential to avoid duplication or misalignment of investments. This Series paper shows the global distribution of existing OHNs and assesses their collective characteristics to identify potential deficits in the ways OHNs have formed and to help increase the effectiveness of investments. We searched PubMed, Google, Google Scholar, and relevant conference websites for potential OHNs and identified 184 worldwide for further analysis. We developed four case studies to show important findings from our research and exemplify best practices in One Health operationalisation. Our findings show that, although more OHNs were formed in the past 10 years than in the preceding decade, investment in OHNs has not been equitably distributed; more OHNs are formed and headquartered in Europe than in any other region, and emerging infections and novel pathogens were the priority focus area for most OHNs, with fewer OHNs focusing on other important hazards and pressing threats to health security. We found substantial deficits in the OHNs collaboration model regarding the diversity of stakeholder and sector representation, which we argue impedes effective and equitable OHN formation and contributes to other imbalances in OHN distribution and priorities. These findings are supported by previous evidence that shows the skewed investment in One Health thus far. The increased attention to One Health after the COVID-19 pandemic is an opportunity to focus efforts and resources to areas that need them most. Analyses, such as this Series paper, should be used to establish databases and repositories of OHNs worldwide. Increased attention should then be given to understanding existing resource allocation and distribution patterns, establish more egalitarian networks that encompass the breadth of One Health issues, and serve communities most affected by emerging, re-emerging, or endemic threats at the human-animal-environment interface.


Asunto(s)
COVID-19 , Salud Única , Humanos , COVID-19/epidemiología , Pandemias , Europa (Continente) , Proliferación Celular , Salud Global
2.
One Health Outlook ; 3(1): 5, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1388848

RESUMEN

BACKGROUND: The emergence of high consequence pathogens such as Ebola and SARS-CoV-2, along with the continued burden of neglected diseases such as rabies, has highlighted the need for preparedness for emerging and endemic infectious diseases of zoonotic origin in sub-Saharan Africa (SSA) using a One Health approach. To identify trends in SSA preparedness, the World Health Organization (WHO) Joint External Evaluation (JEE) reports were analysed. JEEs are voluntary, collaborative processes to assess country's capacities to prevent, detect and rapidly respond to public health risks. This report aimed to analyse the JEE zoonotic disease preparedness data as a whole and identify strengths and weaknesses. METHODS: JEE zoonotic disease preparedness scores for 44 SSA countries who had completed JEEs were analysed. An overall zoonotic disease preparedness score was calculated as an average of the sum of all the SSA country zoonotic disease preparedness scores and compared to the overall mean JEE score. Zoonotic disease preparedness indicators were analysed and data were collated into regions to identify key areas of strength. RESULTS: The mean 'Zoonotic disease' preparedness score (2.35, range 1.00-4.00) was 7% higher compared to the mean overall JEE preparedness score (2.19, range 1.55-3.30), putting 'Zoonotic Diseases' 5th out of 19 JEE sub-areas for preparedness. The average scores for each 'Zoonotic Disease' category were 2.45 for 'Surveillance Systems', 2.76 for 'Veterinary Workforce' and 1.84 for 'Response Mechanisms'. The Southern African region scored highest across the 'Zoonotic disease' categories (2.87).A multisectoral priority zoonotic pathogens list is in place for 43% of SSA countries and 70% reported undertaking national surveillance on 1-5 zoonotic diseases. 70% of SSA countries reported having public health training courses in place for veterinarians and 30% had veterinarians in all districts (reported as sufficient staffing). A multisectoral action plan for zoonotic outbreaks was in place for 14% countries and 32% reported having an established inter-agency response team for zoonotic outbreaks. The zoonotic diseases that appeared most in reported country priority lists were rabies and Highly Pathogenic Avian Influenza (HPAI) (both 89%), anthrax (83%), and brucellosis (78%). CONCLUSIONS: With 'Zoonotic Diseases' ranking 5th in the JEE sub-areas and a mean SSA score 7% greater than the overall mean JEE score, zoonotic disease preparedness appears to have the attention of most SSA countries. However, the considerable range suggests that some countries have more measures in place than others, which may perhaps reflect the geography and types of pathogens that commonly occur. The category 'Response Mechanisms' had the lowest mean score across SSA, suggesting that implementing a multisectoral action plan and response team could provide the greatest gains.

3.
Front Public Health ; 8: 596944, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-979060

RESUMEN

The World Health Organization defines a zoonosis as any infection naturally transmissible from vertebrate animals to humans. The pandemic of Coronavirus disease (COVID-19) caused by SARS-CoV-2 has been classified as a zoonotic disease, however, no animal reservoir has yet been found, so this classification is premature. We propose that COVID-19 should instead be classified an "emerging infectious disease (EID) of probable animal origin." To explore if COVID-19 infection fits our proposed re-categorization vs. the contemporary definitions of zoonoses, we reviewed current evidence of infection origin and transmission routes of SARS-CoV-2 virus and described this in the context of known zoonoses, EIDs and "spill-over" events. Although the initial one hundred COVID-19 patients were presumably exposed to the virus at a seafood Market in China, and despite the fact that 33 of 585 swab samples collected from surfaces and cages in the market tested positive for SARS-CoV-2, no virus was isolated directly from animals and no animal reservoir was detected. Elsewhere, SARS-CoV-2 has been detected in animals including domesticated cats, dogs, and ferrets, as well as captive-managed mink, lions, tigers, deer, and mice confirming zooanthroponosis. Other than circumstantial evidence of zoonotic cases in mink farms in the Netherlands, no cases of natural transmission from wild or domesticated animals have been confirmed. More than 40 million human COVID-19 infections reported appear to be exclusively through human-human transmission. SARS-CoV-2 virus and COVID-19 do not meet the WHO definition of zoonoses. We suggest SARS-CoV-2 should be re-classified as an EID of probable animal origin.


Asunto(s)
COVID-19/clasificación , Enfermedades Transmisibles Emergentes , SARS-CoV-2/clasificación , Zoonosis , Animales , Animales Salvajes , China , Enfermedades Transmisibles Emergentes/clasificación , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Humanos , Organización Mundial de la Salud , Zoonosis/clasificación , Zoonosis/transmisión , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA